Comments from Swedish Association of Dental Mercury Patients

During previous contacts with EU regarding dental amalgam, the Ad-Hoc Working Group on dental amalgam, we formed a coalition of patient organisations and representatives from some of them participated in 2 meetings in Brussels. The Swedish Association of Dental Mercury Patients is one of the patient organisations and I am the deputy director and responsible for scientific matters. We also cooperate with the Sw. Chemical Inspection Agency regarding a reduction of mercury use.

Sincerely
Mats Hanson
Swedish Association of Dental Mercury Patients (Tf)
Mats Hanson e-mail: mercapto@telia.com
Sten.Olof Grönquist

To:
Commision of the European Communities
Directorate-General
Environment
Env.G - Sustainable Development & Integration
ENV.G.2 - Industry

Comment on the consultation document
Development of an EU Mercury Strategy
Env-mercury-strategy@cec.eu.int

GENERAL

The consultation document: Development of an EU Mercury Strategy does not adequately cover the environmental and health aspects of mercury use in dentistry. Dental organizations with their continuing use of an 19th century material tend to downplay the toxic and environmental effects of mercury release. Earlier they completely denied that any mercury was released at all, despite this having been demonstrated already in 1882.

There are some aspects which make it clear that the environmental impact is much more severe than releases from dental clinics and from crematoria, point sources which can be reasonably well controlled by the use of amalgam separators and filters. The excretion of mercury and also silver in feces and urine (mostly feces) from every person with amalgam fillings is not controllable with filters but only by rapidly phasing out amalgam use, thereby stopping it at its source. Alternative and much less toxic materials are available, not one single material which can replace amalgam but a collection of materials which together can replace amalgam. When dental associations state otherwise they are not telling the truth since there are numerous dentists who have not used amalgam for years. Also the Swedish Health and Welfare Board has acknowledged that a range of new materials can together replace amalgam and the Swedish Dental Insurance System does not anymore subsidise amalgam.

The mercury problem is severe and e.g. a study demonstrated increased global atmospheric concentrations of mercury of 1.46 % per year (Slemr & Langer, 1992). Despite current efforts to reduce mercury emissions the mercury problem will persist for hundreds of years. Pike from Swedish lakes are expected to have half the current levels in about 250 years (Hakansson, 1996)

The health effects are difficult to diagnose but can from a scientific point of view be expected to have a severe impact (Nriagu, 1988) and “any long-term exposure may therefore be expected to progressively cause more severe disruptions in the normal functioning of the organ systems where the metals are accumulating” (Nriagu, 1988).

The efforts to curb mercury emissions should be encouraged but the continuing use of amalgam will cause ridicule in a growing segment of the population when more and more persons become aware of what they have in their teeth. Mercury is poisonous, also amalgam which is carved away during amalgam placement. It is poisonous when drilled out and should be handled as toxic waste. In
between it is considered completely harmless by the dental profession, an equation which is hardly credible. As an example: A swedish woman phoned me and told that she had an amalgam-filled tooth extracted and wanted to take it with her in a box. The dentist refused this because it was hazardous waste!

Regarding the health effects of amalgam in place in the teeth our organization might possible be considered biased but an increasing number of scientists around the world report of considerable exposure to mercury (and silver and copper) from amalgam, an exposure which far exceeds that from food.

In addition other researchers report toxic, immunological and other effects at ever lower concentrations of mercury, effects which disrupt the normal functioning of the cells and their integration to a functioning whole. The recent Swedish Dept. of Health evaluation "Dental Materials and Health" (SOU 2003:53) included a risk evaluation by prof. Maths Berlin, former chairman of the WHO task group on environmental health criteria for inorganic mercury (Environmental Health Criteria 118, Inorganic Mercury, WHO 1991). Some quotes: "Mercury is thus a multipotent cytotoxin that intervenes in the primary processes of the cell. This creates scope for a broad spectrum of possible side-effects." "Low doses of mercury vapor...These effects in animal experiments resemble those observed after exposure to methyl mercury. However, the dose of mercury that yields the effect has been only about one-tenth of the dose of mercury that exerts an effect following exposure to methyl mercury." (monkey experiments on foetal development). "amalgam must be considered an unsuitable material for dental restoration."

SLUDGE

6 years of sludge addition increased chromium and mercury content in soil linearly with amount of sludge addition. Increase approx. 25 times compared to pre-sludge conditions (Williams et al. 1985). In Goldstone et al (1990) approximately 2 % was found to be methylmercury. Heating of sludge as done in some countries releases 95 % of the mercury to the air (Balogh & Liang, 1995). Another study showed an increase of 75 times Hg in soil after sludge application and a release of 12-24 pg/m²/h to air as methylmercury and ~100 ng/m²/h as inorganic Hg (Carpi et al, 1997). An estimate of total emissions to air after sludge amendment was about 5 tons/year in Europe and US together (Carpi & Lindberg, 1997).

The Hg content in soil affects the soil microbiological activity with decreased diversity (Muller et al, 2001).

At least half of the Hg in sludge originates from Hg in feces, some from dental clinics. Amalgam separators are not efficient enough. Calculated on particle removal they are efficient but not on dissolved Hg and very fine material. Arenholt-Bindslev & Larsen (1996) measured a release of 270 mg/dentist/day without separators (range 65-842) and 35 mg/dentist/day with separators (range 12-99). The mercury removal efficiency was only 26.5-61.8 % for a large clinic in contrast to 92.3-99.9 % for particles. For a one-chair dental office higher 80.8-94.7 for total mercury (Drummond et al, 2003). Many dental clinics demonstrate incompetence in handling mercury and separators and most clinics have not cleaned the sewage system for many years. (Lonnroth & Shahnavaz, 1996). The drain pipes can contain kilograms of mercury

Dental waste water contain bacteria which methylate mercury to a level which is magnitudes higher than found in the environment, ppb levels for dental wastewater compared to ppt levels in water from the environment (Stone et al, 2003).

The dental office separates water from air (from aspirators). The air is usually emitted to the outside. A measurement showed that the air contained high levels of mercury, often exceeding industrial permissible levels. There is no control of whether anyone can be exposed (Rubin & Ho, 1996).

Amalgam releases Hg into saliva. A study by Leistevuo et al, (2002) demonstrated that 20.5 % of examined persons with amalgam exceeded the permissible level in wastewater of 0.05 mg/l (EU). (Williams DE et al, 1985)
MASSIVE EXPOSURE FROM MERCURY FILLINGS AND DENTAL PROCEDURES

Amalgam fillings relase mercury into the body. The mercury will eventually end up in sludge, in crematoria or is emitted to the air. Numerous studies has shown that for most of the population amalgam is the major Hg source. If there is also exposure from e.g. fish the situation will be worse. Some studies: Engin-Deniz et al, 1992; Aposhian et al, 1992; Willershausen-Zonnchen et al, 1992; Drasch et al, 1992; Willershausen-Zonnchen et al, 1994; Drasch et al 1994; Begerow et al 1994, Skare & Engqvist 1994; Arvidson et al, 1994; Drasch et al 1995; Liang & Brooks 1995; Skare, 1995; Sallsten et al 1996; Oskarsson et al, 1996; Sellars et al 1996; Bjorkman et al 1997; Engqvist et al 1998; Galic et al 1999; Leistevuo et al 2000; Nylander et al 1987; Hahn et al 1990; Barregard et al 1995;

BIOLOGICAL EFFECTS ON HUMANS, ANIMALS AND CELLS

Numerous studies have also demonstrated the long persistence of mercury in the body (Hargeaves et al 1998) and long-lasting effects (Kishi et al 1993).


Slemr F & Langer E Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic Ocean Nature 355 1992 434-437


Carpi A; Lindberg SE; Prestbo EM; Bloom NS Methyl mercury contamination and emission to the atmosphere from soil amended with municipal sewage sludge. Journal of Environmental Quality; 26 (6). 1997. 1650-1655.


Muller AK; Westergaard K; Christensen S; Sorensen SJ The effect of long-term mercury pollution on the soil microbial community. Fems Microbiology Ecology; 36 (1) p11-19 JUN 2001


PG & Yu M-H Mercury vapor in amalgam waste discharged from dental office vacuum units Arch Env Hlth 51 1996 335-337


Williams, DE; Vlamis J; Pukite AH; Corey JE Metal movement in sludge-treated soils after six years of sludge addition 2. nickel cobalt iron manganese chromium and mercury Soil Sci; 140 (2). 1985. 120-125.


Aposhian HV; Bruce DC; Alter W; Dart RC; Hurlbut KM; Aposhian MM Urinary mercury after administration of 2,3-dimercaptopropane-1-sulfonic acid - Correlation with dental amalgam score. FASEB Journal; 6 (7) p2472-2476 APR 1992

Willershausen-Zönnchen B; Zimmermann M; Defregger A; Schramel P; Hamm G Oral mucosal mercury concentrations in patients with amalgam fillings. Deutsche Medizinische Wochenschrift; 117 (46) p1743-1747 NOV 13 1992 (in German) (Quecksilberkonzentration der Mundschleimhaut bei Patienten mit Amalgamfüllungen)

Drasch G, Schupp I, Riedl G & Gunther G Einfluss von Amalgamfüllungen auf die Quecksilberkonzentration in menschlichen Organen Dtsch Zahnärztl Z 47 1992 490-6


Drasch G; Schupp I; Hofh; Reinke R; Roider G Mercury burden of human fetal and infant tissues. European Journal of Pediatrics; 153 (8) p607-610 AUG 1994

Begerow J; Zander D; Freier I; Dunemann L Long-term mercury excretion in urine after removal of amalgam fillings. International Archives of Occupational and Environmental Health; 66 (3) p209-212 SEP 1994

Skare I; Engqvist A Human exposure to mercury and silver released from dental amalgam restorations. Archives of Environmental Health; 49 (5) p384-394 1994

Arvidson B; Arvidsson J; Johansson K Mercury Deposits in Neurons of the Trigeminal Ganglia After Insertion of Dental Amalgam in Rats. Biometals; 7 (3) p261-263 1994

Drasch G; Gath HJ; Heissler E; Schupp I; Roider G Silver concentrations in human tissues, their dependence on dental amalgam and other factors. Journal of Trace Elements in Medicine and Biology; 9 (2) p82-87 JUL 1995


Sallsten G; Thoren J; Barregard L; Schutz A; Skarping G Long-term use of nicotine chewing gum and mercury exposure from dental amalgam fillings. Journal of Dental Research; 75 (1) p594-598 JAN 1996

Oskarsson A; Schutz A; Skerfving S; Hallen IP; Lagerkvist BJ Total and inorganic mercury in breast milk and blood in relation to fish consumption and amalgam fillings in lactating women. Archives of Environmental Health; 51 (3) p234-241 MAY-JUN 1996

Sellars WA, Sellars RJr, Liang L & Hefley JD Methyl mercury in dental amalgams in the human mouth J Nutr Envir Med 6 1996 33-36


Engqvist A, Colmsjö A, Skare I Speciation of mercury excreted in feces from individuals with amalgam fillings Arch Envr Hlth 53 1998 205-213

Galic N; Prpicmehicic G; Prester L; Blanusa M; Kronic Z; Ferencic Z Dental amalgam mercury exposure in rats. Blometals; 12 (3) p227-231 SEP 1999

Leistevuo J; Leistevuo T; Helenius H; Pyy L; Osterblad M; Huovinen P; Tenovuo J Dental amalgam fillings and the amount of organic mercury in human saliva. Caries Research; 35 (3) p163-166 MAY-JUN 2001


Hahn LJ, Kloiber R, Leininger RW, Vimy MJ & Lorscheider FL Whole-body imaging of the distribution of mercury released from dental fillings into monkey tissues FASEB J 4 1990 3256-60

Barregard L; Sallsten G; Jarvholm B People with high mercury uptake from their own dental amalgam fillings. Occupational and Environmental Medicine; 52 (2) p124-128 FEB 1995


Olivieri G; Brack C; Mullerspahn F; Stahelin HB; Herrmann M; Renard P; Brockhaus M; Hock C Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. Journal of Neurochemistry; 74 (1) p231-236 JAN 2000

Ronnback L; Hansson E Chronic Encephalopathies Induced by Mercury or Lead - Aspects of Underlying Cellular and Molecular Mechanisms. British Journal of Industrial Medicine; 49 (4) p233-240 APR 1992

Hultman P; Johansson U; Turley SJ; Lindh U; Enestrom S; Pollard KM Adverse immunological effects and autoimmunity induced by dental amalgam and alloy in mice. FASEB Journal; 8 (14) p1183-1190 NOV 1994; Dental amalgam and alloy induces autoimmunity in genetically susceptible mice (Editorial) FASEB J 8(14) 1994 1109

Hultman P; Lindh U; Horstedbindslev P Activation of the immune system and systemic immune-complex deposits in brown Norway rats with dental amalgam restorations. Journal of Dental Research; 77 (6) p1415-1425 JUN 1998


Pollard KM; Pearson DL; Hultman P; Deane TN; Lindh U; Kono DH Xenobiotic acceleration of idiopathic systemic autoimmunity in lupus-prone BXSB mice. Environmental Health Perspectives; 109 (1) p27-33 JAN 2001

Cantoni N, Evans RM, Costa M Similarity in the acute cytotoxic response of mammalian cells to mercury (II) and x-rays: DNA damage and glutathione depletion Biochem Biophys Res Comm 108 1982 614-9


Olsson G & Lindh U Ver"nderungen des allgemeinen Gesundheitszustandes nach Amalgamentfernung. Eine zehnj"hrige Studie Ganzheitliche Zahnm Medizin (GZM) 2 1997 22-28


Ngim CH; Foo SC; Boey KW; Jeyaratnam J Chronic neurobehavioural effects of elemental mercury in dentists. British Journal of Industrial Medicine; 49 (11) p782-790 NOV 1992
Woods JS; Martin MD; Naleway CA; Echeverria D Urinary porphyrin profiles as a biomarker of mercury exposure - Studies on dentists with occupational exposure to mercury vapor. Journal of Toxicology and Environmental Health; 40 (2-3) p235-246 OCT-NOV 1993 (AT18)

Echeverria D; Heyer NJ; Martin MD; Naleway CA; Woods JS; Bittner AC Behavioral effects of low-level exposure to Hg-o among dentists. Neurotoxicology and Teratology; 17 (2) p161-168 MAR-APR 1995

Bittner AC; Echeverria D; Woods JS; Aposhian HV; Naleway C; Martin MD; Mahurin RK; Heyer NJ; Cianciola M Behavioral effects of low-level exposure to Hg-0 among dental professionals: A cross-study evaluation of psychomotor effects. Neurotoxicology and Teratology; 20 (4) p429-439 JUL-AUG 1998

Echeverria D; Aposhian HV; Woods JS; Heyer NJ; Aposhian MM; Bittner AC; Mahurin RK; Cianciola M Neurobehavioral effects from exposure to dental amalgam Hg degrees: new distinctions between recent exposure and Hg body burden. FASEB Journal; 12 (11) p971-980 AUG 1998


HolmboeBang M Portraet af en syg stand Tandlaegebl 103(14) 1999 673-5 (Dan) (Portrait of a sick profession)
