Formation of Cyanogen Chloride from the Reaction of Monochloramine with Formaldehyde

ERIK J. PEDERSEN III,1 EDWARD T. URBANSKY, 2 BENITO J. MARÍNAS, 3, 4 AND DALE W. MARGERUM*5

School of Civil Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, and Department of Civil and Environmental Engineering, University of Illinois, Urbana, Illinois 61801

Methanediol dehydrates to give formaldehyde, which reacts rapidly and reversibly with monochloramine to form N-chloroaminomethanol. Under drinking water conditions, N-chloroaminomethanol undergoes a relatively slow decomposition that eventually leads to the formation of cyanogen chloride (ClCN) in apparently stoichiometric amounts. The following reaction sequence is proposed: CH₂(OH)₂ → CH₂O + H₂O; CH₂O + NH₂Cl ⇌ CH₂(OH)NHCl; CH₂(OH)NHCl → CH₂NCl + H₂O; CH₂NCl → HCN + HCl; CN⁻ + NH₄⁺ + H⁺ → ClCN + NH₃. These reactions were studied at 25°C and an ionic strength of 0.10 M (NaClO₄). Stop-flow photometry was used to monitor rapid, reversible reactions, and photometry was used to study relatively slow decomposition reactions. Equilibrium and rate constants for the addition of formaldehyde to monochloramine were (6.6 ± 1.5) × 10⁸ M⁻¹ s⁻¹ and (2.8 ± 0.1) × 10⁶ M⁻¹ s⁻¹, respectively. The dehydration of N-chloroaminomethanol was catalyzed by both H⁺ and OH⁻, with respective rate constants of 277 ± 7 and 26.9 ± 5.6 M⁻¹ s⁻¹. Under characteristic drinking water conditions, the decay of N-chloroaminomethanol is the rate-limiting step. N-Chloromethanimine, formed by the dehydration of N-chloroaminomethanol, had a decomposition rate constant of (6.65 ± 0.06) × 10⁻⁴ s⁻¹. At the relatively high methanediol concentrations used in this study, the intermediary N-chlorodimethanolamine was formed by the rapid and reversible reaction of N-chloroaminomethanol with formaldehyde. N-Chlorodimethanolamine then decayed relatively slowly. The following reaction sequence is proposed: CH₂(OH)NHCl + CH₂O ⇌ (CH₂(OH))₂NCl; (CH₂(OH))₂NCl → CH₂NCl + CH₂O + H₂O. The equilibrium and rate constants for the addition of formaldehyde to N-chloroaminomethanol were (9.5 ± 2.5) × 10⁷ M⁻¹ and (3.6 ± 0.1) × 10⁶ M⁻¹ s⁻¹, respectively. The decomposition of N-chlorodimethanolamine was catalyzed by OH⁻, with a rate constant of 19.2 ± 3.7 M⁻¹ s⁻¹. N-Chlorodimethanolamine would not be present under typical drinking water treatment conditions.

Introduction
Cyanogen chloride (ClCN) is a toxic disinfection byproduct (DBP) commonly observed in chloraminated drinking water (1). The formation of ClCN in natural waters and the corresponding role of water quality parameters are not well understood. This lack of information prompted the U.S. Environmental Protection Agency to include ClCN in the Information Collection Rule (ICR) (2). The ICR required quarterly monitoring of ClCN by public water systems using chloramines and serving populations of at least 100,000 with surface water or 50,000 with groundwater (2). The World Health Organization recently proposed a guideline value of 70 μg/L for all cyanide species (including cyanogen compounds) in drinking water (3).

Preliminary testing (4, 5) has shown that ClCN forms when monochloramine and formaldehyde are reacted at concentrations representative of drinking water treatment. Formaldehyde, also a common DBP, is formed during ozonation or chlorination of waters containing natural organic matter (6–8) and during through reaction of glycine with monochloramine (9). Monochloramine is commonly considered as a secondary disinfectant following ozonation.

In the present work, we show that formaldehyde reacts rapidly and reversibly with monochloramine to form N-chloroaminomethanol, CH₂(OH)NHCl, a carbaminohydroxamic acid. This type of nucleophilic addition reaction is known to occur by attack of the lone electron pair of primary amines on the electrophilic carbonyl carbon of aldehydes (10–15). CH₂(OH)NHCl decomposes relatively slowly to form N-chloromethanimine, H₂C=NCI, which can rapidly lose HCl to yield hydrocyanic acid. Cyanide ion and HCN are known to react rapidly with monochloramine to produce ClCN (16). In cases where monochloramine is present in excess of total formaldehyde (e.g., drinking water conditions), the conversion of formaldehyde to ClCN appears to be stoichiometric after accounting for ClCN decomposition by hydrolysis (4, 5). Although there are other possible formation pathways for ClCN in chloraminated drinking water (17–20), the reaction series from CH₂O to CH₂(OH)NHCl to CH₂NCl to HCN to ClCN would appear to be a major pathway, particularly when pre-ozonation is employed.

To study the kinetics of the formation and subsequent decomposition of N-chloroaminomethanol, the concentration ratios of the reactants were varied from a slight excess of monochloramine to a large excess of formaldehyde. Under conditions of excess formaldehyde, a second rapid, reversible reaction of formaldehyde occurs with N-chloroaminomethanol to form N-chlorodimethanolamine, (CH₂(OH))₂NCl, which also undergoes relatively slow decay. N-Chlorodimethanolamine would not be present at significant levels under drinking water treatment conditions. The formation and decomposition of this compound, however, affected reaction rates under experimental conditions used in this study and is therefore of interest. The major objectives of this investigation were to study the rapid formation reactions and also the relatively slow decay sequences of both N-chloroaminomethanol and N-chlorodimethanolamine.

Experimental Section
Reagents and Solutions. Formaldehyde solutions were prepared by dilution of a 37% stock solution also containing approximately 10% methanol. The stock solution was standardized gravimetrically by reacting with 5,5-dimethyl-1,3-cyclohexanedione and forming an insoluble adduct (21). Parafomaldehyde initially present in the stock solution was...
allowed to depolymerize for several hours following dilution (22, 23). Low concentrations of methanol (final concentrations of <0.25%) and trace levels of formic acid (a decomposition product of formaldehyde) (24) did not affect reaction rates or interfere with any of the reactants.

Monochloramine solutions were prepared by adding sodium hypochlorite solution dropwise to a rapidly stirred buffered solution of ammonium chloride until achieving a NJ/Cl molar ratio of 1.1. The pH of these stock solutions was adjusted to a value of 9 or greater in order to minimize disproportionation of monochloramine (25). Ammonium chloride solutions were prepared by dissolving the salt in water, and sodium hypochlorite solutions were prepared by dilution of a commercially available stock solution, which was standardized spectrophotometrically. Monochloramine solutions were also standardized spectrophotometrically prior to use ($\lambda_{\text{max}} = 243 \text{ nm, } \varepsilon_{243} = 461 \text{ M}^{-1} \text{ cm}^{-1}$) (36).

Stock CICN solutions were prepared gravimetrically by discharging a small amount of pressurized CICN gas over a tared flask, which contained water acidified to a pH < 3 (to minimize CICN hydrolysis). A small cylinder containing approximately 300 g of >99% pure CICN (Solkatronic Chemicals, Inc., Fairfield, NJ) was used for this purpose. Once the weight stabilized, the flask was stoppered and the solution mixed. Other stock solutions were prepared by dissolution of appropriate amounts of reagent-grade chemicals.

Instrumental Methods. A Durrum model 110 stopped-flow spectrophotometer interfaced to a computer with a MetraByte Dash-16 A/D converter was used to study rapid addition reactions. The absorbance was monitored at 242 nm. This wavelength gave optimum resolution for changes in absorbance during the conversion of reactants to products. All absorbance values were converted so that they corresponded to a 1 cm cell path length. The drive syringes as well as the observation cell were thermostated at 25.0 ± 0.1°C. For a given set of conditions, 4–10 replicate tests were performed. Initial absorbance (A_0), equilibrium absorbance (A_e), and observed rate constant (k_{obs}) were estimated for each test by nonlinear least-squares fitting of absorbance data to rate expressions presented in the following section. Values reported for these parameters were the arithmetic average of each replicate set.

The rates of the slower decomposition reactions were studied by monitoring absorbances at 250 nm with a Perkin-Elmer Lambda 9 UV–Vis spectrophotometer interfaced to a computer. In most cases, absorbance measurements were recorded at this wavelength at a given time interval (time drive). Repetitive scans of a given wavelength range were also performed at a specified time interval to observe spectral changes. Reactions were initiated by two methods. For relatively slow reactions (e.g., $p[H]^+ \approx 6–8$, 25°C), an aliquot of monochloramine was added to a rapidly stirred formaldehyde solution of equal volume. Under conditions where the reaction was expected to be faster, a T-mixer was used to provide rapid mixing of the reactants. The cell holder of the spectrophotometer was thermostated at 25.0 ± 0.1°C for all experiments. The Teflon-stoppered quartz cells used were essentially gastight and headspace-free.

Membrane introduction mass spectrometry (MIMS) analyses were performed to provide evidence for the formation of the two proposed N-chloro species. The apparatus consisted of a Finnigan TSQ 700 mass spectrometer equipped with an alkylated silicone membrane in the probe. The sample was circulated through the membrane at a flow rate of 1.0 mL/min, and the probe temperature was either ambient or 66°C. The intensity of ions with mass-to-charge ratio (m/z) in the range of 60–300 amu produced by electron impact ionization was recorded.

A Hewlett-Packard series II 5990 gas chromatograph (GC) equipped with a 5972 series mass selective (MS) detector was used to identify intermediates and products in methylene chloride extracts of reaction solutions. The temperature of a split/splitless injector was held at a constant value of 100°C. A 60 m long Supelco VOCOL capillary column with 0.25 mm i.d. was used. The column oven was held at 35°C for 6 min following injection, then increased at 2°C/min to 70°C, held constant for 30 s, increased at 20°C/min to 120°C, and held at that temperature for 5 min. The flow rate of the carrier gas, helium, was constant at 0.48 mL/min. The detector scanned for eluting compounds in the range of 10–300 amu.

A Varian 3300 GC equipped with a 60Ni pulsed electron capture detector (ECD) was used in the analysis of CICN in gas headspace samples. GC components included an on-column injector, and a 30 m long, 0.53 mm i.d. Supelco VOCOL fused silica capillary column. The temperatures of the injector, column, and detector were constant at 100, 35, and 290°C, respectively. Nitrogen was used as carrier and makeup gas at respective flow rates of 6.1 and 26 mL/min.

An Orion model SA 720 digital pH meter equipped with a Corning combination electrode was used for pH measurements. The electrodes were calibrated so that the measured pH values could be converted to $p[H]^- = -\log[H^+]$. This was accomplished by monitoring the electrode response during a titration of standard NaOH with perchloric acid at an ion strength of 0.1 M and then correlating pH measurements to the known $p[H]^-$ values. For the slow decay reactions, measurements were generally taken immediately after the reaction started as well as at the middle of the reaction to confirm that the pH remained constant.

Gas Chromatography Sample Preparation. Headspace samples analyzed by GC-ECD were prepared by first filling a 17-mL vial approximately half-full with the solution of interest. The vial was sealed liquid-tight with Teflon tape, shaken vigorously for approximately 10 s, and allowed to equilibrate for 1–2 min. A 450-μL headspace gas sample was then captured with a gas-tight syringe equipped with gas-tight valve and injected into the GC-ECD.

Samples analyzed by GC–MS were prepared by first filling a 17-mL glass vial with screw cap and Teflon septa with 7 mL of the sample. One milliliter of methylene chloride was added to the vial and shaken vigorously for approximately 10 s. A 1.5 ± 0.1 μL methylene chloride sample was withdrawn with a syringe (after rapid equilibration) and injected into the GC–MS.

Experimental Matrix. A summary of experimental sets performed for this study is presented in Table 1. Experiments were designed to assess the role of $p[H]^-$, initial formaldehyde concentration, buffer type, and buffer concentration in the kinetics of the initial formaldehyde addition reactions (sets AP–1–9) and decomposition kinetics of intermediaries (sets DP–1–7, DB–1–8, and DC–1).

Results and Discussion

Reaction Sequence. A sequence (eqs 1 and 2) analogous to that observed between formaldehyde and ammonia (27) is proposed for the reaction of formaldehyde with monochloramine:

$$\text{CH}_2\text{O} + \text{NH}_2\text{Cl} \overset{k_1}{\underset{k_2}{\rightarrow}} \text{CH}_2\text{(OH)}\cdot\text{NHCl} \quad (1)$$

$$\text{CH}_2\text{(OH)}\cdot\text{NHCl} + \text{CH}_2\text{O} \overset{k_3}{\rightarrow} \{\text{CH}_2\text{(OH)}\}_2\text{NCl} \quad (2)$$

Both reactions are reversible and occur over a millisecond–second time scale for conditions used in this study. N-
Chloroaminomethanol and N-chlorodimethanolaminethen decay relatively slowly to form N-chloromethanimine (eqs 3 and 4) as previously reported (28, 29):

\[\text{CH}_2(\text{OH})\text{NHCl} \overset{k_1}{\leftrightarrow} \text{CH}_2\text{NCl} + \text{H}_2\text{O} \quad (3) \]

\[\{\text{CH}_2(\text{OH})\}_2\text{NCl} \overset{k_2}{\leftrightarrow} \text{CH}_2\text{O} + \text{CH}_2\text{NCl} + \text{H}_2\text{O} \quad (4) \]

N-Chloromethanimine decomposes to hydrogen cyanide (28, 30) and hydrogen chloride:

\[\text{CH}_2\text{NCl} \overset{k_4}{\rightarrow} \text{HCN} + \text{HCl} \quad (5) \]

The hydrogen cyanide dissociates and reaches equilibrium with cyanide ion:

\[\text{HCN} \rightleftharpoons \text{CN}^- + \text{H}^+ \quad (6) \]

with pK_a = 9.01 at 25 °C and μ = 0.1 M (31). Finally, cyanide ion reacts with monochloramine to form cyanogen chloride and ammonia via the general acid-catalyzed reaction (16):

\[\text{CN}^- + \text{NH}_2\text{Cl} + \text{H}^+ \overset{k_5}{\rightarrow} \text{CICN} + \text{NH}_3 \quad (7) \]

with a rate constant of 4.32 \times 10^{10} \text{ M}^{-2} \text{ s}^{-1} at \mu = 1.0 \text{ M} (\text{NaClO}_4) and 25 °C (16).

Formaldehyde forms a stable gem-diol, methanediol, in aqueous solution:

\[\text{CH}_2(\text{OH})_2 \overset{k_{11}}{\rightarrow} \text{CH}_2\text{O} + \text{H}_2\text{O} \quad (8) \]

The equilibrium in eq 8 is shifted almost entirely to the left, i.e., most of the total formaldehyde present in the form of methanediol in dilute aqueous solutions (24). The dehydration reaction undergoes general acid–base catalysis; rate constants for H^+, H_2O, H_3PO_4^−, HPO_4^{2−}, and OH^− were 2.7 M^{-1} s^{-1}, 5.1 \times 10^{-3} s^{-1}, 0.088 M^{-1} s^{-1}, 0.39 M^{-1} s^{-1}, and 1600 M^{-1} s^{-1}, respectively, at 25 °C and an ionic strength (μ) of 0.2 M (32). The equilibrium constant for eq 8 at 25 °C in the presence of phosphate is (33)

\[K_1 = \frac{[\text{CH}_2\text{O}]}{[\text{CH}_2(\text{OH})_2]} = 6.31 \times 10^{-4} + 5.1 \times 10^{-4} [\text{H}_2\text{PO}_4^-] + 21.6 \times 10^{-4} [\text{HPO}_4^{2-}] \quad (9) \]

Formaldehyde also tends to polymerize at relatively high concentrations. The predominant polymeric species at the highest concentrations investigated in this study ([CH2O] = 0.27 M) were the dimer and trimer, which form according to

\[2\text{HO(}\text{CH}_2\text{O})\text{H} \rightleftharpoons \text{HO(}\text{CH}_2\text{O})_2\text{H} + \text{H}_2\text{O} \quad (10) \]

\[\text{HO(}\text{CH}_2\text{O})_2\text{H} + \text{HO(}\text{CH}_2\text{O})\text{H} \rightleftharpoons \text{HO(}\text{CH}_2\text{O})_3\text{H} + \text{H}_2\text{O} \quad (11) \]

K_{d2} and K_{d3} have reported values of 0.083 and 0.12 M^{-1}, respectively (34). Methanediol concentrations were calculated after taking eqs 10 and 11 into consideration for all cases in which polymer formation was appreciable ([CH2O] \geq 40 mM).

UV Spectral Evidence for N-Chloroaminomethanol and N-Chlorodimethanolamine. For the rapid and reversible formaldehyde addition reactions (eqs 1 and 2), there are three species of interest that absorb in the UV region: NH_2Cl, CH_2(\text{OH})NHCl, and (CH_2(\text{OH}))_2NCl. These molecules absorb due to \(\pi \rightarrow \pi^* \) electronic transition at the N–Cl bond. Formaldehyde, methanediol, and their polymeric species do not absorb in this region. Figure 1 presents equilibrium spectra corresponding to several solutions prepared with initial total formaldehyde concentrations in the range of 0–0.11 M and a constant initial monochloramine concentration of 0.457 mM. All solutions were buffered with phosphate at a total

TABLE 1. Summary of Experiments Performed To Study Formaldehyde Addition (Sets AP-1–9) and Intermediates Decomposition (Sets DP-1–7, DB-1–8, and DC-1) Reactions

<table>
<thead>
<tr>
<th>exp set</th>
<th>pH</th>
<th>[NH2Cl]_o (M)</th>
<th>[CH2O]_o (M)</th>
<th>type</th>
<th>buffer concn (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP-1</td>
<td>6.95</td>
<td>0.000965</td>
<td>0.000486–0.00110</td>
<td>phosphate</td>
<td>0.015</td>
</tr>
<tr>
<td>AP-2</td>
<td>6.96</td>
<td>0.000957</td>
<td>0.000365–0.00142</td>
<td>phosphate</td>
<td>0.015</td>
</tr>
<tr>
<td>AP-3</td>
<td>6.96</td>
<td>0.000961</td>
<td>0.000243–0.00122</td>
<td>phosphate</td>
<td>0.015</td>
</tr>
<tr>
<td>AP-4</td>
<td>7.34</td>
<td>0.001102</td>
<td>0.000779</td>
<td>phosphate</td>
<td>0.014–0.0385</td>
</tr>
<tr>
<td>AP-5</td>
<td>6.69–7.73</td>
<td>0.00103</td>
<td>0.000768</td>
<td>phosphate</td>
<td>0.015</td>
</tr>
<tr>
<td>AP-6</td>
<td>6.70</td>
<td>0.001102</td>
<td>0.000771</td>
<td>phosphate</td>
<td>0.009–0.027</td>
</tr>
<tr>
<td>AP-7</td>
<td>6.89</td>
<td>0.000472</td>
<td>0.0512–0.273</td>
<td>phosphate</td>
<td>0.012</td>
</tr>
<tr>
<td>AP-8</td>
<td>6.91</td>
<td>0.000495</td>
<td>0.0338–0.203</td>
<td>phosphate</td>
<td>0.018</td>
</tr>
<tr>
<td>AP-9</td>
<td>7.19</td>
<td>0.000488</td>
<td>0.203</td>
<td>phosphate</td>
<td>0.0100–0.0225</td>
</tr>
<tr>
<td>DP-1</td>
<td>2.82–5.18</td>
<td>0.000493</td>
<td>0.0473</td>
<td>phosphate</td>
<td>0.020</td>
</tr>
<tr>
<td>DP-2</td>
<td>5.59–6.03</td>
<td>0.000488</td>
<td>0.0473</td>
<td>phosphate</td>
<td>0.020</td>
</tr>
<tr>
<td>DP-3</td>
<td>5.63–6.15</td>
<td>0.000483</td>
<td>0.0473</td>
<td>phosphate</td>
<td>0.020</td>
</tr>
<tr>
<td>DP-4</td>
<td>5.83–5.86</td>
<td>0.000488</td>
<td>0.0270–0.101</td>
<td>phosphate</td>
<td>0.020</td>
</tr>
<tr>
<td>DP-5</td>
<td>5.91–5.93</td>
<td>0.000494</td>
<td>0.0473</td>
<td>phosphate</td>
<td>0.014–0.035</td>
</tr>
<tr>
<td>DP-6</td>
<td>7.45–7.48</td>
<td>0.000491</td>
<td>0.0338</td>
<td>phosphate</td>
<td>0.011–0.021</td>
</tr>
<tr>
<td>DP-7</td>
<td>7.42–7.46</td>
<td>0.000491</td>
<td>0.101</td>
<td>phosphate</td>
<td>0.011–0.021</td>
</tr>
<tr>
<td>DB-1</td>
<td>8.36–8.65</td>
<td>0.000488</td>
<td>0.0473</td>
<td>borate</td>
<td>0.020</td>
</tr>
<tr>
<td>DB-2</td>
<td>8.64</td>
<td>0.000494</td>
<td>0.0270–0.101</td>
<td>borate</td>
<td>0.020</td>
</tr>
<tr>
<td>DB-3</td>
<td>9.05</td>
<td>0.000486</td>
<td>0.0203–0.101</td>
<td>borate</td>
<td>0.020</td>
</tr>
<tr>
<td>DB-4</td>
<td>8.17</td>
<td>0.000486</td>
<td>0.0270–0.101</td>
<td>borate</td>
<td>0.020</td>
</tr>
<tr>
<td>DB-5</td>
<td>8.89</td>
<td>0.000487</td>
<td>0.0338</td>
<td>borate</td>
<td>0.015–0.030</td>
</tr>
<tr>
<td>DB-6</td>
<td>8.88</td>
<td>0.000487</td>
<td>0.101</td>
<td>borate</td>
<td>0.012–0.030</td>
</tr>
<tr>
<td>DB-7</td>
<td>8.44</td>
<td>0.000497</td>
<td>0.0338</td>
<td>borate</td>
<td>0.012–0.030</td>
</tr>
<tr>
<td>DB-8</td>
<td>8.42</td>
<td>0.000497</td>
<td>0.101</td>
<td>borate</td>
<td>0.012–0.030</td>
</tr>
<tr>
<td>DC-1</td>
<td>9.23–10.23</td>
<td>0.000487</td>
<td>0.0473</td>
<td>carbonate</td>
<td>0.020</td>
</tr>
</tbody>
</table>

+a Temperature = 25 °C, ionic strength = 0.1 M unless otherwise indicated. b Ionic strength = 0.2 M to allow for a broader total buffer concentration range.
concentration $[\text{PO}_4]_T$ and concentrations ranging from 0 to 0.114 M. Additional experimental conditions: $p[H^+] = 7.84 \pm 0.10$, $[\text{PO}_4]_T = 0.010$ M, 25.0 ± 0.1 °C, $\mu = 0.1$ M (NaClO$_4$), reaction time = 3–5 min. The curves corresponding to relatively low methanediol concentrations (0–4.5 mM) had isosbestic points (filled circles in Figure 1) consistent with an equilibrium between two absorbing compounds, proposed to be NH_2Cl and $\text{CH}_2(\text{OH})\text{NHCl}$. The spectra of solutions with greater total formaldehyde concentrations deviated from these isosbestic points, indicating the presence of at least a third absorbing species; this is proposed to be ($\text{CH}_2(\text{OH})_2)_2\text{NCl}$. New isosbestic points were reached (open circles in Figure 1) at methanediol concentrations of 32–110 mM, consistent with an equilibrium between $\text{CH}_2(\text{OH})\text{NHCl}$ and ($\text{CH}_2(\text{OH})_2)_2\text{NCl}$. The spectral shift presented in Figure 1 was similar to that reported for the $\text{NH}_2\text{Cl}^-\text{CH}_3\text{NHC}l^-\text{(CH}_3)_2\text{NCl}$ system (35).

Mass Spectral Evidence of Intermediates and Products.

A monochloramine solution, prepared by adding 7.5 mM hypochlorite to 12.5 mM ammonium chloride, was reacted with 100 mM total formaldehyde. The reaction solution was analyzed by MIMS within 2 h. Strong signals for ions with m/z values of 82 and 84 amu at the expected isotopic ratio for chlorine revealed the presence of $\text{CH}_2(\text{OH})\text{NHCl}$. This experiment also provided evidence for the existence of ($\text{CH}_2(\text{OH})_2)_2\text{NCl}$, with weaker signals at 111 and approximately 113.

Another test was performed by reacting 123 mM total formaldehyde with 20.4 mM monochloramine at pH 8. Methylene chloride extracts were analyzed by GC–MS after elapsed times of 8, 127, 229, and 331 min. N-Chloromethanimine was identified as a rapidly forming intermediate, which decayed slowly and was not present at significant levels by the end of the test. CICN was also identified; the increase in its concentration corresponded qualitatively to the loss of N-chloromethanimine. The observation of significant amounts of N-chloromethanimine was somewhat unexpected; at pH 8, this species should not accumulate to appreciable levels in the reaction solution. A possible explanation for its presence is that N-chloroaminomethanol undergoes thermally induced dehydration inside the GC–MS injection port (100 °C). Another possibility is that N-chloroaminomethanol dehydrates in methylene chloride.

Identification of CICN by GC–ECD. The formation of CICN was also confirmed in an experiment at $p[H^+]\approx 5.6$. Additional conditions included $[\text{NH}_2\text{Cl}]_0 = 0.492$ mM, $[\text{CH}_2\text{O}]_0 = 47.3$ mM, and $[\text{PO}_4]_T = 49$ mM. Headspace GC–ECD analysis revealed the presence of a large peak at an elution time identical to that of CICN.

Reactions between Formaldehyde and Monochloramine.

The reaction of formaldehyde with monochloramine (eq 1) was relatively fast. Kinetic analysis was complicated somewhat by the subsequent reaction of formaldehyde with N-chloroaminomethanol (eq 2), which was also rapid though somewhat slower. This interference was minimized by performing stopped-flow experiments at relatively low $[\text{CH}_2\text{O}]_0$ concentrations ranging from 0.243 to 1.42 mM (sets AP-1–3, Table 1). Representative results obtained for experimental set AP-3 are presented in Figure 2 in terms of decreasing absorbance at 242 nm with increasing reaction time.

The low reactant dosages used to isolate eq 1 resulted in relatively small changes in species distribution and absorbance. Kinetic data obtained under these conditions can be analyzed by the chemical relaxation, or concentration jump, method (36). The kinetic system is given by

$$A \underset{k_{-1}}{\xrightarrow{k_1}} B + H_2O$$ \hspace{1cm} (12)

$$B + C \underset{k_{-2}}{\xrightarrow{k_2}} D$$ \hspace{1cm} (13)

where $A = \text{CH}_2(\text{OH})_2\text{NCl}, B = \text{CH}_2\text{O}, C = \text{NH}_2\text{Cl},$ and $D = \text{CH}_2(\text{OH})\text{NHCl}$. Corresponding changes in concentrations of the species involved are

$$\frac{d\delta_A}{dt} = -k_1\delta_A + k_{-1}\delta_B$$ \hspace{1cm} (14)

$$\frac{d\delta_B}{dt} = k_1\delta_A - (k_{-1} + k_2[C])\delta_B - k_2[B]\delta_A + k_{-2}\delta_D$$ \hspace{1cm} (15)

$$\frac{d\delta_c}{dt} = -\frac{d\delta_D}{dt} = -k_2[C]\delta_B - k_2[B]\delta_C + k_{-2}\delta_D$$ \hspace{1cm} (16)

where the subscript e denotes equilibrium, and δ is the
difference between equilibrium and actual concentrations (e.g., $\Delta a = ([A]_e - [A])$). Equations 15 and 16 were obtained after neglecting a relatively small nonlinear term with the form $k_3 [B]_e C$. Under the experimental conditions used, B can be regarded as a low-level, steady-state species (36). The steady-state concentration jump (Δa_{ss}) can be estimated by setting eq 15 equal to zero:

$$\Delta a_{ss} = \frac{k_3 [B]_e [C]_e}{k_{-1} + k_3 [C]_e}$$ \hspace{1cm} (17)$$

Substitution of eq 17 and mass balance conditions $\Delta a = -\Delta a_{ss}$ into eq 16 gives

$$\frac{d\Delta a}{dt} = -\frac{(k_1 + k_2 [B]_e)[C]_e}{k_1 + k_2 [C]_e}[C]_e + k_2 [B]_e [C]_e - k_{-2} [B]_e [C]_e = -k_{obs} \Delta a$$ \hspace{1cm} (18)$$

where k_{obs} is the observed first-order relaxation rate constant, and $[C]_e$ and $[B]_e$ are

$$[C]_e = \frac{1}{2} ([C]_0 - [A]_0) - \frac{k_{-1} [B]_e}{k_1 k_2} + \sqrt{[C]_0 - [A]_0 - \frac{k_{-1} [B]_e}{k_1 k_2}}$$

$$[B]_e = \frac{k_2}{k_{-2}} ([A]_0 - [B]_e + [C]_e)$$ \hspace{1cm} (20)$$

Observed absorbances, A, can be related to Δa with

$$(A - A_0) = l(\epsilon_C - \epsilon_D) \Delta a$$ \hspace{1cm} (21)$$

where A_0 is the equilibrium absorbance, ϵ_C and ϵ_D are the molar absorptivities for C and D, respectively, and l is the light pathway length in the spectrophotometer cell. Equation 21 can be used to substitute Δa for $(A - A_0)$ in eq 18, and the resulting equation can be integrated to obtain

$$(A - A_0) = (A_0 - A_0) e^{-k_{-2} t}$$ \hspace{1cm} (22)$$

where A_0 is the initial absorbance.

Values of k_{obs}, A_0, and A_0 were determined by fitting experimental absorbance data to eq 22 by nonlinear least-squares regression. Resulting average k_{obs} values were plotted in Figure 3 against corresponding initial methanediol concentrations. Rate constants k_1 and k_{-2} were then obtained by fitting k_{obs} values to the expression inside the parenthesis of eq 18. Resulting values for k_2 and k_{-2} and corresponding equilibrium constant, $K_2 = k_2/k_{-2}$, are presented in Table 2. The average K_2 value, the equilibrium absorbance A_0 of each trace, and the molar absorptivity for monochloramine (Table 3) were used to obtain the molar absorptivity for N-chloroaminomethanol at the experimental wavelength of 242 nm (Table 3).

The occurrence of general base catalysis was assessed by performing experiments at $[PO_4]_{T0} = 9.385$ mM and $p[H^+] = 6.69 - 7.73$ (sets AP-4-6, Table 1). Equilibrium constants used for $H_2PO_4^-$ and H_2O were $pK_a = 6.72$ and $pK_w = 13.78$ both at 25 °C and $\mu = 0.1$ M (31). The relatively narrow $p[H^+]$ range obtained by the experiments was used in Table 2. The occurrence of general base catalysis was assessed by performing experiments at $[PO_4]_{T0} = 9.385$ mM and $p[H^+] = 6.69 - 7.73$ (sets AP-4-6, Table 1). Equilibrium constants used for $H_2PO_4^-$ and H_2O were $pK_a = 6.72$ and $pK_w = 13.78$ both at 25 °C and $\mu = 0.1$ M (31).
Equation 22 was used to analyze the data for each trace, with chloroaminomethanol, a reaction discussed subsequently.

The buffer dependence of the reverse rate constants, k_2, for an experimental set performed at (●) $p(H^+)=7.19 \pm 0.04$, $[PO_4]_T=0.00100\text{–}0.00225 \, M$, $\mu=0.1 \, M$ (NaClO$_4$); $[\text{CH}_2\text{OH}]_0=0.203 \, M$, $[\text{NH}_2\text{Cl}]_0=0.488 \pm 0.020 \, M$, $25.0 \pm 0.1 \, ^\circ\text{C}$ (set AP-9, Table 1).

range and low buffer concentrations were selected to minimize the acid–base-catalyzed decomposition of N-chloroaminomethanol, a reaction discussed subsequently. Equation 22 was used to analyze the data for each trace, with $k_{-2}=k_2/k_3$ and k_2 equal to the average value determined from the relaxation experiments (Table 2). Data analysis revealed that HPO$_4^{2-}$ was the only base with an appreciable catalytic effect under the conditions investigated. The buffer dependence of k_2 (see Figure 4) could therefore be represented with

$$k_2 = k_2^0 + k_2^{HPO}_2[HPO_4^{2-}] \quad (23)$$

Base catalysis constants estimated by linear regression of the k_2 data shown in Figure 4 are presented in Table 2. The reverse rate constants, k_{-2} and $k_{-3}^{HPO}_4$, can be calculated by dividing the respective forward rate constants by K_2. Within the relatively narrow $p(H^+)$ range and at the reaction times studied, the slow, acid–base-catalyzed decomposition of N-chloroaminomethanol did not interfere with the determination of K_2 and k_{-2}.

The equilibrium and rate constants presented in Table 2 for eq 1 were used to predict all absorbance traces performed at relatively low total formaldehyde concentrations. As illustrated in Figure 2, good agreement was generally observed between experimental and predicted traces.

Reaction between Formaldehyde and N-Chloroaminomethanol. The reaction of formaldehyde with N-chloroaminomethanol (eq 22) was analyzed by performing tests with methanediol in large excess compared to monochloramine. Under these conditions and after N-chloroaminomethanol reached peak concentration, eqs 1 and 8 can be assumed to be in rapid preequilibrium as compared to eq 2. The system could thus be represented with eqs 12 and 13 at preequilibrium as

$$B + D \rightleftharpoons k_{-3} \rightarrow E \quad (24)$$

with $B = \text{CH}_2\text{O}$, $D = \text{CH}_2(\text{OH})\text{NH}_2\text{Cl}$, and $E = \{\text{CH}_2(\text{OH})\}_2\text{NCl}$.

The kinetic and equilibrium constants presented in Table 2 were applied to predict complete stopped-flow photometry traces at relatively high $[\text{CH}_2\text{OH}]_0$. A kinetic model including rate expressions for the five species involved in eqs 1, 2, and
8 was solved by a finite difference approach. As illustrated in Figure 5, the model represented the experimental data adequately.

Decomposition of N-Chloroaminomethanol and N-Chlorodimethanolamine. The formaldehyde addition reactions (eqs 1 and 2) practically reached equilibrium prior to a relatively slower decrease in absorbance resulting from the decompositions of N-chloroaminomethanol and N-chlorodimethanolamine. Four of the species involved in eqs 3–7 absorb light at 250 nm: monochloramine, N-chloroaminomethanol, N-chlorodimethanolamine, and N-chloroammonine. It is subsequently demonstrated that, with the exception of tests performed at pH 250 nm, molar absorptivities (Table 3) were estimated by fitting the initial absorbance of all traces performed with phosphate buffer at pH > 5.5 with eq 32.

\[
\frac{dC_{T,NCl}}{dt} = k_d[CH_2(OH)NHCl] + k_d[(CH_2(OH))_2NCl] \tag{26}
\]

with

\[
C_{T,NCl} = [NH_2Cl] + [CH_2(OH)NHCl] + [(CH_2(OH))_2NCl] \tag{27}
\]

Equation 26 is valid only if the reaction of cyanide ion with monochloramine (eq 7) is much slower than eqs 3 and 4. The validity of this assumption is addressed in a later section.

The concentration of each N-chloro species can be expressed as a function of \(C_{T,NCl} \) by combining the equilibrium expressions for eqs 1 and 2 with eq 27:

\[
\frac{[NH_2Cl]}{C_{T,NCl}} = \alpha_0 = \frac{1}{1 + K_1 K_2[CH_2(OH)]_2 + K_1^2 K_2^2[CH_2(OH)]_2^2} \tag{28}
\]

\[
\frac{[CH_2(OH)NHCl]}{C_{T,NCl}} = \alpha_1 = \frac{K_1 K_2[CH_2(OH)]}{1 + K_1 K_2[CH_2(OH)]_2 + K_1^2 K_2^2[CH_2(OH)]_2^2} \tag{29}
\]

\[
\frac{[(CH_2(OH))_2NCl]}{C_{T,NCl}} = \alpha_2 = \frac{K_1^2 K_2[CH_2(OH)]_2}{1 + K_1 K_2[CH_2(OH)]_2 + K_1^2 K_2^2[CH_2(OH)]_2^2} \tag{30}
\]

Substitution of eqs 29 and 30 into eq 26 results in the following rate expression:

\[
-\frac{dC_{T,NCl}}{dt} = \alpha_1(k_4 + k_3 K_3[CH_2(OH)]_2) C_{T,NCl} \tag{31}
\]

The total absorbance of the solution can be expressed as a function of \(C_{T,NCl} \):

\[
A = (\alpha_{0f0} + \alpha_{1f1} + \alpha_{2f2})C_{T,NCl} \tag{32}
\]

\(\epsilon_{0f0}, \epsilon_{1f1}, \) and \(\epsilon_{2f2} \) are the molar absorptivities of monochloramine, N-chloroaminomethanol, and N-chlorodimethanolamine at 250 nm. Molar absorptivities (Table 3) were estimated by fitting the initial absorbance of all traces performed with phosphate buffer at pH > 5.5 with eq 32.

![FIGURE 6. Observed and predicted apparent first-order rate constants corresponding to two experimental sets performed at relatively high [CH2O]T,0 and different buffer concentrations. Experimental conditions: (●) [CH2O]T,0 = 51.2–273 mM, pH = 6.89 ± 0.06, [PO4]T = 0.012 M; [NH2Cl]T = 0.472 mM; (■) [CH2O]T,0 = 33.8–203 mM, pH = 6.91 ± 0.02, [PO4]T = 0.018 M, [NH2Cl]T = 0.495 mM; 25.0 ± 0.1 °C, and μ = 0.1 M (NaClO4) for both sets (sets AP-7 and AP-8, Table 1). The initial decay rates for traces corresponding to most experimental sets were first order:

\[-\frac{dA}{dt} = k_{obs}A \tag{33}\]

where \(A \) is absorbance and \(k_{obs} \) is the observed first-order rate constant.

Substitution of eq 32 into eq 33 gives an expression of the form of eq 31 with

\[k_{obs} = \alpha_1(k_4 + k_3 K_3[CH_2(OH)]_2) \tag{34}\]

Values for equilibrium constants \(K_1, K_2, \) and \(K_3 \) (Table 2) can be applied to calculate the fractions of N-chloro compounds for the range of experimental conditions investigated with phosphate buffer. The estimated fractions ranged from \(\alpha_0 = 0.003, \alpha_1 = 0.369, \) and \(\alpha_2 = 0.597 \) at \([CH_2O]_{T,0} = 0.0270 M\) to \(\alpha_0 = 0.003, \alpha_1 = 0.143, \) and \(\alpha_2 = 0.854 \) at \([CH_2O]_{T,0} = 0.101 M\).

Rate Constants. Absorbance traces obtained for set DC-1 (Table 1) are shown in Figure 7. First-order reactions (eq 33) were observed in all four tests. Similarly, the initial decay rates for traces corresponding to most other experimental sets were also first order. A tendency of the apparent rate to deviate from initial first order, which was more pronounced near neutral pH, and 3.5 ≤ pH ≤ 5.5 will be addressed subsequently. \(k_{obs} \) values were estimated from the initial slope of absorbance traces for all experiments performed at \([NH_2Cl]_T = 0.5 M, [CH_2O]_T = 47.3 M\), and buffer concentration of 20 mM (phosphate, borate, or carbonate). Initial apparent first-order decay rates obtained at 2.8 < pH < 5.5 < pH < 10.2 are plotted against the corresponding pH in Figure 8. As discussed previously, the rate of absorbance decay had a tendency to deviate from first order as reactions proceeded. The main reason for this deviation at pH > 5 was that the rate of monochloramine decomposition according to eq 7 became comparable to those for eqs 1–4 as the concentration of cyanide resulting from eqs 5 and 6 increased with time. The initial reaction time
range for which the rate remained nearly first order was estimated for each trace by setting the criteria that the rate of eq 7 be generally less than 5% of the overall apparent rate. A trial-and-error approach was followed for this purpose using the rate constants reported by Schurter et al. (16) for eq 7.

Inspection of Figure 8 reveals the occurrence of both acid and base catalysis for p[H+] > 5.5. kobs reached an apparent constant value at p[H+] ≈ 5.5 due to a shift in limiting reactant from N-chloroaminomethanol and N-chlorodimethanolamine to N-chloromethanimine as discussed in a subsequent section. First-order kinetics were not observed at 3.5 < p[H+] < 5.5.

5.5 < p[H+] < 6.5. According to eq 34, a plot of kobs/αL values against [CH2(OH)2]0 = [CH2(OH)2]0 should be linear with slope k4K1K1 and intercept k4. As depicted in Figure 9 for set DP-4 data (Table 1), eq 3 was responsible for most of the decomposition of N-chloro species at p[H+] = 5.8. On the basis of the criteria defined previously for interference by eq 7, first-order rate constants could only be determined for tests at high formaldehyde concentrations within this set. The results are consistent with acid-catalyzed dehydration of N-chloroaminomethanol to N-chloromethanimine. As shown in Scheme 1, the hydroxyl group of N-chloroaminomethanol is susceptible to protonation. Acid-catalyzed dehydration of N-chlorodimethanolamine would not be expected because the nitrogen atom has no proton to lose. Also, Antelo and co-workers performed a study on the decomposition rate of a similar compound, N-chlorodiethanolamine, and found that base catalysis and not acid catalysis was the predominant decay pathway (37). Consequently, eq 33 simplifies to

\[k_{obs} = \alpha_k k_4 \] (35)

Two acids, H2PO4- and H3O+, were checked for contribution to k4 within this p[H+] range. Analysis of the data for experimental set DP-5 (Table 1) revealed that the effect of H2PO4- was negligible. Consequently, the overall rate constant k4 can be expressed as

\[k_4 = k_4^H[H^+] \] (35)

Values of kobs obtained from trace data from sets DP-2–5 that met the criteria of lack of interference by eq 7 were used to determine the contribution of H+ to the overall acid catalysis of eq 3. Resulting kobs/αL values are plotted against [H+] in Figure 10. The rate constant k4H (Table 2) was estimated from the slope of the regression line in Figure 10.
The decomposition of N-chloro compounds in this pH range was investigated with borate-buffered solutions (Table 1). In general, experimental \(k_{obs} \) values tended to be lower than expected. This deviation was more pronounced at relatively high values of buffer concentration, \([\text{pH}]^+ \), and \([\text{CH}_2\text{O}]_0\). Boric acid, known to form cyclic borate esters with 1,2-diols (38), probably reacted with N-chlorodimethanolamine. The following reaction is proposed to account for this effect:

\[
\text{B(OH)}_3 + 2(\text{CH}_2(\text{OH}))_2\text{NCl} \leftrightarrow K_b \quad \text{C[N(\text{CH}_2\text{O})_2\text{B(OH)}_2]}^- + \text{H}_2\text{O} + \text{H}^+ \quad (36)
\]

with \(K_b \) as the reaction equilibrium constant. The total concentration of N-chloro compounds is

\[
C_{T,NCl} = [\text{NH}_2\text{Cl}] + [\text{CH}_2(\text{OH})\text{NHCl}] + ([\text{CH}_2(\text{OH})]_2\text{NCl} + [\text{CIN(\text{CH}_2\text{O})_2\text{B(OH)}_2}]) \quad (37)
\]

and the rate expression is

\[
-\frac{dC_{T,NCl}}{dt} = \beta_1(k_4 + k_5k_3[\text{CH}_2(\text{OH})_2])C_{T,NCl} = k_{obs}C_{T,NCl} \quad (38)
\]

with \(\beta_1 \) substituting \(\alpha_1 \) (see eq 34) as the new fraction for N-chloroaminomethanol:

\[
\beta_1 = k_3k_4[\text{CH}_2(\text{OH})_2]/(1 + k_3k_4[\text{CH}_2(\text{OH})_2]) + k_3^2k_4[\text{CH}_2(\text{OH})_2]k_3(1 + k_6[\text{B(OH)}_2]/[\text{H}^+]) \quad (39)
\]

Equations 38 and 39 are based on the assumptions that eq 36 is reversible and in rapid equilibrium with respect to eqs 3 and 4. Also, notice that according to eq 39, \(\beta_1 \) would decrease with increasing values of both \(\text{p[H}^+] \) and \([\text{CH}_2\text{O}]_0\). This effect would be consistent with the observed trend in experimental \(k_{obs} \) values as a function of both \(\text{p[H}^+] \) (Figure 8) and \([\text{CH}_2\text{O}]_0\).

Experimental \(k_{obs} \) values for data from sets DB-1–5 (Table 1) were fitted with eqs 38 and 39. For this purpose, \(k_4 \) and \(k_5 \) were assumed to include the following components:

\[
k_4 = k_{4H}^+[\text{H}^+] + k_{4OH}^-[\text{OH}^-] \quad (40)
\]

\[
k_5 = k_{5OH}^-[\text{OH}^-] \quad (41)
\]

with \(k_{4H}^+ \) being the value determined previously (Table 2). Equations 40 and 41 were based on the assumption that the borate/boric acid buffer had a negligible catalytic effect on \(k_{obs} \) over the range of experimental conditions tested. Estimated fitting parameters \(k_4, k_{4OH}^-, \) and \(k_{5OH}^- \) are presented in Table 2. The dissociation constant used for boric acid was \(pK_b = 8.97 \) at 25 °C and \(\mu = 0.1 \text{ M} \) (31). On the basis of \(K_b = 1.42 \times 10^{-7} \), the fraction of total N-chloro compounds occurring as the proposed cyclic borate ester is estimated to range from 18% at \(\text{p[H}^+] = 8.17 \) and \([\text{CH}_2\text{O}]_0 = 0.0270 \text{ M} \) to 55% at \(\text{p[H}^+] = 9.05 \) and \([\text{CH}_2\text{O}]_0 = 0.101 \text{ M} \).

Results for experimental set DB-3 (Table 1) are plotted in Figure 9 according to eq 38. The increase in both slope and intercept of the linear regressions with increasing \(\text{p[H}^+] \) confirmed that both \(k_4 \) and \(k_5 \) included base catalysis components in accordance with eqs 40 and 41. N-Chloroaminomethanol and N-chlorodimethanolamine are both expected to undergo base catalysis since proton removal should occur in each case (Schemes 2 and 3).

The total absorbance of the solution can be expressed as a function of \(C_{T,NCl} \):

\[
A = (\beta_0\varepsilon_0 + \beta_1\varepsilon_1 + \beta_2\varepsilon_2 + \beta_3\varepsilon_3)C_{T,NCl} \quad (42)
\]

in which \(\beta_0, \beta_1, \beta_2, \) and \(\beta_3 \) are the molar fractions of monochloramine, N-chloroaminomethanol, N-chlorodimethanolamine, and cyclic borate ester; \(\varepsilon_0, \varepsilon_1, \varepsilon_2, \) and \(\varepsilon_3 \) are the corresponding molar absorptivities at 250 nm. The molar absorptivity of the cyclic borate ester (Table 3) was estimated by fitting the initial absorbance of all traces performed with borate buffer with eq 42 using the \(\varepsilon_0, \varepsilon_1, \) and \(\varepsilon_2 \) values previously determined for phosphate buffer solutions (Table 3).

\(\text{p[H}^+] > 9 \) and \(\text{p[H}^+] = 7.4 \). The validity of \(k_{4OH}^- \) and \(k_{5OH}^- \) values estimated with borate buffer data (Table 2) was checked by comparing to experimental results obtained for set DC-1 with carbonate buffer and for set DP-7 with...
The decomposition of N-chloromethanimine (eq 5) is proposed as the rate-limiting reaction at \(p[H^+] < 3 \). The presence of N-chloromethanimine was supported by a shift in the spectrum of the reaction solutions at this pH range. The analysis of experimental traces at \(3.0 < p[H^+] < 5.5 \) required taking into consideration the simultaneous decomposition of N-chloroaminomethane and N-chlorodimethylaniline (eqs 3 and 4) and the formation and decomposition of N-chloromethanimine (eq 5) or

\[
\frac{d[CH_2NCl]}{dt} = \alpha_1 k_6 [CT,NCl] - [CH_2NCl] - k_5 [CH_2NCl] \quad \text{(43)}
\]

\[
-\frac{dC_{T,NCl}}{dt} = k_6 [CH_2NCl] \quad \text{(44)}
\]

where \(k_6 \) is the rate constant for N-chloromethanimine decomposition, \(\alpha_1 \) and \(k_5 \) are defined by eqs 29 and 40, and the total concentration of N-chloro compounds is given by

\[C_{T,NCl} = [NH_2Cl] + [CH_2(OH)NHC] + [(CH_2(OH))_2NCl] + [CH_2NCl] \quad \text{(45)} \]

Integration of eqs 43 and 44 resulted in the following analytical solutions:

\[C_{T,NCl} = a_1 e^{\lambda_1 t} + a_2 e^{\lambda_2 t} \quad \text{(46)} \]

\[[CH_2NCl] = -\frac{1}{k_6} (a_1 e^{\lambda_1 t} + a_2 e^{\lambda_2 t}) \quad \text{(47)} \]

with

\[a_1 = \frac{\lambda_2}{\lambda_2 - \lambda_1} C_{T,NCl,o} \quad \text{(48)} \]

\[a_2 = \frac{\lambda_1}{\lambda_1 - \lambda_2} C_{T,NCl,o} \quad \text{(49)} \]

\[\lambda_1, \lambda_2 = \frac{-\alpha_1 k_4 + k_6 \pm \sqrt{(\alpha_1 k_4 + k_6)^2 - 4 \alpha_1 k_4 k_6}}{2} \quad \text{(50)} \]

Finally, total solution absorbance can be expressed as a function of \(C_{T,NCl} \) and \([CH_2NCl]\):

\[A = (\alpha_6 e_6 + \alpha_1 e_1 + \alpha_2 e_2) (C_{T,NCl} - [CH_2NCl]) + \epsilon [CH_2NCl] \quad \text{(51)} \]

where \(\epsilon_6, \epsilon_1, \epsilon_2, \) and \(\epsilon_4 \) are the molar absorptivities of monochloramine, N-chloroaminomethanol, N-chlorodimethylaniline, and N-chloromethanimine at 250 nm. The molar absorbivity for N-chloromethanimine, estimated by fitting the initial absorbance of the trace performed with phosphate buffer at \(p[H^+] = 2.8 \) (set DP-1) with eq 51, is also presented in Table 3.

Equations 46–51, with the \(k_6^H \) value from Table 2, were used to fit traces for experimental set DP-1. A trial and error analysis revealed that eq 5 was base-catalyzed according to

\[k_6 = k_6^0 + k_6^{OH^-} [OH^-] \quad \text{(52)} \]

where \(k_6^0 \) and \(k_6^{OH^-} \) are the rate constants for water and hydroxide ion catalysis. Values of \(k_6^0 \) and \(k_6^{OH^-} \), calculated from fitting of the experimental traces, are presented in Table 2.

Good agreement was found between fitted curves and experimental traces as depicted in Figure 12. The deviation observed at initial reaction times might have resulted from...
neglecting the contribution by eq 7 to the overall rate of N-chloro compounds decomposition.

The proposed mechanism for base-catalyzed decomposition of N-chloromethanimine is depicted in Scheme 4. Proton removal is required for the formation of HCN. The rates of water and hydroxide assisted decay pathways are significantly higher for N-chloromethanimine than those for the decay of N-chloroaminomethanol and N-chlorodimethanolamine (see Figure 8). Consequently, N-chloromethanimine should not accumulate to significant levels at \([\text{H}^+] > 5.5 \).

Acknowledgments

This work was supported by Purdue University, U.S. Department of Education Graduate Assistantships in Areas of National Needs Program, and National Science Foundation Grant CHE 9622683. We wish to thank N. Srinivasan and R. Graham Cooks for their assistance with MIMS analyses.

Literature Cited

Received for review February 10, 1999. Revised manuscript received September 4, 1999. Accepted September 10, 1999.

ES990153Q